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Abstract  

Forecasts of the locations of species invasions can improve by integrating species-specific climate and 

habitat variables and the effects of other invaders into predictive models of species distribution. We 

developed two species distribution models (SDMs) using a new algorithm to predict the global 

distributions of two nonindigenous species, grass carp (Ctenopharyngodon idella) and Hydrilla (Hydrilla 

verticillata), with special attention to the North American Great Lakes. We restricted the projected 

suitable habitat for these species using relevant habitat data layers including accumulated Growing 

Degree Days (GDD), submersed aquatic vegetation (SAV), wetlands, and photic zone. In addition, we 

restricted the grass carp niche by the projected Hydrilla niche to explore the potential spatial extent for 

grass carp given a joint invasion scenario. SDMs showed that climate conditions in the Great Lakes basin 

were often suitable for both species, with a high overlap between the areas predicted to be 

climatologically suitable to both species. Restricting Hydrilla regions by GDD and photic zone depth 

showed that the nearshore zones are primary regions for its establishment. The area of predicted 

habitat for grass carp increased greatly when including Hydrilla niche as a potential habitat for this 

species. Integrated risk maps can provide a means for the scientifically informed prioritization of 

management resources toward particular species and geographic regions. 
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Introduction 

Biological invasions of freshwater ecosystems cause significant impacts on community structure  and  

ecosystem  function (Havel et al., 2015). The effects of freshwater invasive species occur globally, in part 

because of their ability for widespread dispersal through both natural pathways (e.g., active or passive 

movement through connected waterways) and human-mediated mechanisms (e.g., intentional stocking, 

accidental releases, hitchhiking on vessels or equipment). Often these human-mediated vectors are 

associated with commercial and recreational activities. It is expected that the effects of aquatic invasive 

species will increase as human populations and associated commerce and recreation also increase 

(Lockwood et al., 2013). 

As a major center of commercial and recreational activity, the Great Lakes Basin represents a unique 

confluence of nonindigenous aquatic species (NAS) from across the globe (Rothlisberger and Lodge, 

2013). Multiple pathways of introduction of NAS to the Great Lakes include transport on ship hulls, 

contamination of ballast tanks, regional overland movement from inland waterbodies on recreational 

boats, aquarium and horticulture trade, accidental release, or passage through waterway connections 

(MacIsaac et al., 2001). As a result, the Great Lakes have been subject to over 180 nonindigenous 

species establishments, some of which have caused irreversible ecological shifts and significant 

economic damages (Mills et al., 1993; Ricciardi and MacIsaac, 2000; Rothlisberger et al., 2012). As 

resources to manage biological invasions are typically scarce, there is value in understanding where NAS 

may establish prior to their establishment. Further, the ability to understand how different NAS may 

facilitate future invasions may also provide useful information for managers prioritizing prevention or 

control strategies. 

A number of tools have been developed to forecast invasive species distributions based on the concept 

of the environmental niche (Guisan and Zimmermann, 2000). Termed "environmental niche model" or 
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"species distribution model" (hereafter referred to as SDM), these correlative predictive models 

combine known geographic locations or occurrences of a species with environmental data (often climate 

data such as temperature or precipitation) to predict species potential geographic distributions in novel 

environments (Elith and Leathwick, 2009; Hutchinson, 1958; Jiménez-Valverde et al., 2011; Pulliam, 

2000). SDMs have been used in a wide range of applications such as locating rare and threatened 

species and habitats, predicting the spread of invasive species, and estimating the response of species to 

global climate change (Guisan and Thuiller, 2005). In the Great Lakes, SDMs have been used to 

anticipate invasions from the Caspian Sea (Fitzpatrick et al., 2013), assess suitable climate conditions for 

an organism in trade, grass carp (Ctenopharyngodon idella) (Wittmann et al., 2014), and to estimate the 

potential range expansion of common reed (Phragmites australis) (Carlson Mazur et al., 2014). 

While SDMs are useful tools to estimate species distributions based on climate variables, they have 

been criticized for the lack of the integration of species-specific habitat information in model 

specification (Araújo and Peterson, 2012; Elith and Leathwick, 2009). The ability to incorporate specific 

habitat information is typically not possible because of the absence of relevant data at the appropriate 

spatial resolutions or extents (Gies et al., 2015). Further, predicting which combinations of species and 

habitats may facilitate or prevent biological invasions is difficult (Romanuk et al., 2009). In part, this is 

due to uncertainties in forecasting how nonindigenous species may interact with one another, and with 

their environments in invaded ecosystems (Grosholz et al., 2000; Johnson et al., 2009).  

Here, we forecast biological invasions by combining an SDM algorithm and a recently developed 

spatially explicit habitat classification database to assess sole and joint invasion scenarios for two 

nonindigenous species that threaten the Great Lakes ecosystem, grass carp and Hydrilla (Hydrilla 

verticillata). First we apply “range bagging”, a new technique of species distribution modeling that uses 

only species presence data (Drake, 2015) to predict suitable climate conditions for these species. Range 
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bagging draws on the concept of a species' environmental range and is inspired by the empirical 

performance of ensemble learning algorithms (e.g., boosted regression trees) in other areas of 

ecological research (Elith et al., 2008). Second, we evaluate localized habitat suitability for each of these 

species using Great Lakes habitat data layers (Wang et al., 2015) specific to the physiological limitations 

of these species as found in the published literature. Finally, we investigated the intersection of the 

restricted niches of both species to understand how the predicted suitable habitat for Hydrilla might 

enhance grass carp distribution.  

The goal of this study was to identify potential habitat for two invasive species that currently threaten 

the Great Lakes region. For our specific study species, Hydrilla and grass carp, we tested the following 

three hypotheses for the Great Lakes region: (1) that there is suitable habitat for the potential invasion 

of Hydrilla and (2) grass carp, and that (3) the presence of Hydrilla can increase the amount of habitat in 

which grass carp could persist. We propose that the incorporation of habitat specific information in 

SDMs can focus management efforts on the locations where prevention, management, and monitoring 

programs will be most effective. 

Methods 

Study Species 

A number of nonindigenous aquatic species currently threaten to invade the Great Lakes region (USACE, 

2011). Due to their proximity to the Great Lakes and the documented negative impacts in other systems, 

grass carp (Ctenopharyngodon idella) and Hydrilla are of particular concern (Langeland, 1996; Michelan 

et al., 2014; Wittmann et al., 2014). Grass carp is a large cyprinid fish native to eastern Asia, with a 

native range extending from northern Vietnam to the Amur River along the Russia-China border (Fuller 

et al., 1999). An herbivore, it has been globally introduced for nuisance aquatic plant control and is also 

cultivated in China and other countries as a food source. Despite its widespread introduction and use as 
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a biocontrol agent for nuisance aquatic macrophytes, there has been a great deal of uncertainty about 

its ecological risk—particularly in the Great Lakes Region (Wittmann et al., 2014). Currently, both diploid 

and triploid grass carp remain widely available for stocking in the U.S., and feral, reproducing 

populations have been reported in the Illinois and Mississippi Rivers (Raibley et al., 1995), Lake Erie, and 

some tributaries of Lake Erie and Lake Michigan (Chapman et al., 2013; Wittmann et al., 2014).  

Hydrilla is a submersed aquatic macrophyte native to central Asia and Australia (Cook and Lüönd, 1982). 

Hydrilla was first detected in Florida in the 1960s (Steward et al., 1984) and is now considered invasive 

and naturalized in the United States as  well  as much of temperate North America. Introduced 

populations also occur in Central and South America, Africa, Europe, and New Zealand (Langeland, 

1996). Hydrilla often has unwanted impacts such as impeding water conveyance, impairment of 

recreation activities, displacement of native plants, and alteration of nearshore community structure 

(Gordon, 1998; Langeland, 1996). The monoecious form of Hydrilla has been found in waterways with a 

direct connection to the Great Lakes in New York and Ohio as recently as 2012 (Jacono et al., 2014). The 

Great Lakes has experienced a number of native aquatic macrophyte declines of ecologic and cultural 

importance, including wild celery (Vallisneria americana) and Wild rice (Zizania palustrus) (Schloesser 

and Manny, 2007; Sierszen et al., 2012). Concern about sensitive wetland species like these in the Great 

Lakes continues to increase as Hydrilla is discovered in adjacent watersheds because studies have shown 

that Hydrilla can competitively exclude these and other native aquatic macrophytes when they are co-

located (Chadwell and Engelhardt, 2008; Langeland, 1996; Rybicki and Carter, 2002). Due in part to its 

life history, Hydrilla is extremely difficult to eradicate (Rejmánek and Pitcairn, 2002). Grass carp prefers 

Hydrilla as a food source, and is commonly used as a biocontrol agent for Hydrilla in the southern US, 

Texas and other regions where the plant is a nuisance (Chilton et al., 2008; Pine and Anderson, 1991; 

Shireman and Maceina, 1981).  
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Species Distribution Model 

We predicted regions of suitable climate conditions for grass carp and Hydrilla by estimating statistical 

relationships between a widely-used set of global climate variables and species occurrence records using 

a new SDM method called “range bagging” (Drake, 2015). Range bagging is a form of boundary 

estimation, considering the limits of the environmental space where a species can persist. The range 

bagging algorithm efficiently estimates the range limits in a multi-dimensional space of environmental 

variables using bootstrap aggregation. By repeatedly defining the convex hull of occupied environments 

in 2 of n dimensions at a time it is possible to determine how often a given environment occurs inside 

these niche boundaries. The resulting measure, called “niche centrality”, refers to the proportion of 

times an environment occurs within the environmental range of a species across the bootstrapped 

combinations of environmental variables.  Range bagging compares well to other species distribution 

models in traditional SDM contexts (Drake, 2015; Drake and Richards in review) and for invasive species 

(Cope et al. in review) with the distinct advantages of not requiring pseudo-absence points for fitting 

and having an ecologically relevant interpretation (Drake, 2015; Cope et al. in review). 

 

The range bagging models were trained on a random partition of 80% of the occurrence data. 

Performance was reported as the area under the ROC (receiver operating characteristic) curve, which is 

referred to as AUC, or “Area Under Curve” (Hanley and McNeil, 1982) on the remaining test data and an 

equal-sized set of randomly selected pseudo-absences (e.g., background localities to be used for model 

parameterization).  The pseudo-absence points were taken from a 2000 km buffer around the presence 

points. Such use of background points is common practice for data that only contain occurrence records 

(Elith and Leathwick, 2009). As a complementary measure of performance, we estimated the continuous 

Boyce index (Hirzel et al., 2006; Petitpierre et al., 2012) that is designed for presence-only data using the 

R package “ecospat”. The Boyce index varies from -1 to 1 with values greater than zero indicating 
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agreement between the predictions and the presences in the test data (Hirzel et al., 2006). This was 

calculated alongside the AUC, with both metrics using the same model output and data for each run of 

the model. We assessed the variance in model performance by performing 10-fold cross-validation on 

the training data (Table S1). Further, we estimated the transferability of the model by conducting 5-fold 

cross-validation on data that was divided into longitudinal bins (Wenger and Olden, 2012). This test 

measures the ability of the model to predict occurrence in distinct geographical areas, with longitudinal 

bins being appropriate for sampling the occurrence of these species on multiple continents. 

 

The niche centrality for each species was estimated as the fraction of times climate conditions were 

captured within the range of the observed occurrences. We also provided estimates of variable 

importance for each species. The importance of candidate predictor variables was measured by 

permuting each variable in sequence and calculating the average reduction in accuracy (as measured by 

changes in AUC, see Electronic Supplementary Material (ESM) Figures S1, S4), across 500 permutations. 

The marginal effect of each variable on model performance was then plotted by varying the predictor of 

interest while holding other variables at their median value (See ESM Figures S3, S6).  

 

Grass carp and Hydrilla occurrence records and environmental climate variables 

Global grass carp and Hydrilla locality information (i.e., positive occurrence) used in the range bagging 

model was obtained from the primary literature and published databases accessed in December 2014 

from the Global Biodiversity Information Facility (GBIF; gbif.org), Fishbase (fishbase.org), and United 

States Geological Survey (USGS; usgs.nas.gov) databases. Overall, 663 grass carp and 1017 Hydrilla 

occurrence records were collected and these were globally distributed on all continents except 

Antarctica, South America and Australia (grass carp only) (Figures 1, 3). grass carp and Hydrilla 

occurrence records were collected between 1934 – 2014 and 1953 – 2014, respectively. Each 
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georeferenced position was verified, and all localities with an uncertainty of position (e.g., a place 

described as “China” rather than a particular river reach or other waterbody location) larger than 50 km 

were removed to improve the accuracy of the model predictions. 

 

The environmental climate variable dataset used in the range bagging model was comprised of 19 

environmental climate variables (Hijmans et al., 2005; worldclim.org). These climate variables, in turn, 

are derived from global maps of temperature (n=11) and precipitation (n=8) interpolated from observed 

data (representative of 1950-2000) (see Hijmans et al., 2005 for a full description of the data used to 

compile the climate variable data) and have been used to previously represent current climate in species 

distribution modelling due to fine spatial resolution and global coverage (Hijmans et al., 2005). 

Specifically, the 11 climate variables that concern temperature include annual mean temperature, mean 

diurnal range, isothermality, temperature seasonality, maximum temperature of the warmest month, 

minimum temperature of the coldest month, temperature annual range, mean temperature of the 

wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, 

and mean temperature of the coldest quarter. The 8 climate variables that concern precipitation are 

annual precipitation, precipitation of the wettest month, precipitation of the driest month, precipitation 

seasonality, precipitation of the wettest quarter, driest quarter, warmest quarter, and coldest quarter. 

The data used was the standard download available from WorldClim, specifically we used the R package 

‘dismo’ to access the data. 

 

WorldClim and similar climate data have been shown to be relevant to construction of abiotic niche 

space (Araújo and Peterson, 2012). In past studies, both large-scale temperature and precipitation 

climate variables (e.g., WorldClim data) have been used as proxies for local aquatic variables and to 

model stream fish distributions and several studies suggest that models built using macroscale variables 
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perform similar to models based on local variables for aquatic species distributions (Frederico et al., 

2014; Porter et al., 2000; Watson and Hillman, 1997). Population establishment and growth rate of grass 

carp (and other aquatic and terrestrial species) have been shown to change with habitat suitability 

measures derived from environmental niche models developed this collection of climate variables 

(Wittmann et al., 2016). We also included the full suite of variables to develop habitat suitability 

predictions for Hydrilla, noting that average annual temperature, average monthly temperature, diurnal 

temperature regime, and water availability have previously been used to model Hydrilla fitness, growth 

and establishment (Gu, 2006; Langeland, 1996; Rybicki and Carter, 2002; Spencer et al., 2000; Sutton, 

1996; Zhang et al., 2013). Accordingly, it seems plausible that the full set of variables would be 

appropriate for consideration in this application given the potential effects of both temperature and 

precipitation on littoral zone conditions (e.g., where grass carp and Hydrilla will occur) and other 

hydrologic regimes (flow, turbidity, water temperature) in the Great Lakes ecosystem. See ESM 

Appendix S1 for a detailed description of each environmental climate variable, variable rescaling 

methodologies, and steps taken to reduce bias in model fitting.  

 

Habitat-specific evaluation 

We used Great Lakes habitat data layers taken from the Great Lakes Aquatic Habitat Framework ( 

GLAHF; http://glahf.org/; Wang et al., 2015) benthic growing degree days, wetland habitat) and the 

Michigan Tech Research Institute (submersed aquatic vegetation, photic zone) to create spatial data 

layers which were used to restrict the species distribution model outputs to suitable habitats in the 

Great Lakes region after converting all layers to a common projection and cell size. Species-specific 

information on environmental limits to occurrence, survival, and spawning was collected from extensive 

review of the primary literature. This included published limits of measured environmental variables, 

such as temperature, growing degree days, substrate type preference, and water chemistry. Cases for 
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which reliable Great Lakes-wide data were unavailable were discarded (e.g., primarily substrate type or 

water quality data). When literature sources differed in their reported limits, the extrema from the set 

of values were considered to be the limit. These environmental conditions were then used to restrict the 

projected range bagging model to the suitable areas of the Great Lakes for each species. 

To identify local (non-climatological) restriction to Hydrilla and grass carp distribution we used several 

variables to identify Great Lakes regions likely to provide suitable habitat for these species based on 

location specific information. To restrict the Hydrilla model, we used a measure of heat accumulation, or 

the number of accumulated growing degree days (GDD; n≥500), to determine regions of the Great Lakes 

that would allow a 50% sprouting rate of axillary turions formed by monoecious Hydrilla plants (after 

Spencer et al., 2000). We also restricted the Hydrilla model by depth of the euphotic zone to represent 

the limitation of water transparency and the maximum depth of Hydrilla colonization within a lake 

(Canfield and Langeland, 1985).  

To restrict the grass carp model, we used a combined data layer representative of submersed aquatic 

vegetation (SAV) and wetland regions of the Great Lakes. Grass carp reproduction is largely based on 

processes that occur in riverine habitats, namely water velocity, flow regime and temperature (Shireman 

and Smith, 1983; Stanley et al., 1978). Adjacent tributaries to the Great Lakes appear to have suitable 

thermal and hydrologic conditions for successful recruitment and habitation (Chapman et al., 2013; 

Kocovsky et al., 2012). Thus, we sought to delineate the distribution of this species by SAV and coastal 

wetland layers in part because of its likelihood for direct utilization of these habitats as a food resource 

and refuge. Through literature review, we found that the thermal conditions in the Great Lakes were 

suitable for grass carp physiology and could not designate any other Great Lakes specific habitat 

variables by which to restrict grass carp habitat by. We also created a second assessment of the grass 
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carp niche by restricting the Great Lakes region projection to a combined SAV, wetland, and projected 

Hydrilla (including GDD and photic zone restriction) data layer. 

Great Lakes Habitat Variables 

Growing degree day (GDD) data were calculated using benthic temperature data (available in the GLAHF 

database) derived from the NOAA Great Lakes Coastal Forecasting System’s (GLCFS) vertical 

temperature models (NOAA-GLERL, 2013).  The GLCFS employs a 3D hydrodynamic model (Beletsky et 

al., 2013; Chu et al., 2011; Schwab and Bedford, 1994) with a horizontal resolution ranging from 2 km 

(Lakes Erie, Huron and Michigan) to 5km (Lake Ontario) to 10 km (Lake Superior) to determine lake 

temperatures (among other physical variables) at 20 vertical levels in all lakes except Lake Erie, which 

has 21 levels.  Benthic temperature was derived using the bottom layer of the hydrodynamic model. 

Benthic GDD was computed using a lower bound of 8°C based on requirements of Hydrilla (Barko and 

Smart, 1986; Spencer et al., 2000) and was calculated separately for each of the Great Lakes using the 

formula, GDD = Tavg - Tbase, when Tavg ≥ Tbase.  Data for all five lakes (with the exception of Lake St. Clair for 

which data were not available) were combined by year using a mosaic process in ArcGIS Version 10.2 

with an output cell size of 2000 m.  We then computed an average value for each grid cell using the 

years 2006-2012.   

Great Lakes euphotic zone depth (z1%), or the depth where only 1% of the surface photosynthetic 

available radiation (PAR) remains, was calculated directly from the diffuse attenuation coefficient for 

downwelling irradiance at 490 nm (Kd_490), in m-1 (NASA, 2015). This algorithm was evaluated using an 

empirical relationship derived from in situ measurements of Kd_490 and blue-to-green band ratios of 

remote sensing reflectances near 490 nm and between 547 and 565 nm. PAR data have been validated 

through comparisons between two satellite systems (MODIS and SeaWiFS PAR) and in situ PAR at three 
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Great Lakes locations (Chatham in Lake Superior, Muskegon in Lake Michigan, and Gaylord in Lake 

Huron) (Yousef et al., in review). 

Wetland data were compiled by the Great Lakes Coastal Wetland Inventory (GLCWC, 2004).  This 

inventory utilized the most comprehensive coastal wetlands data available for the Great Lakes and 

connecting channels and was derived from multiple sources.  Additional information about these data 

can be found at http://glc.org/projects/habitat/coastal-wetlands/cwc-inventory/. Coastal wetlands 

polygonal data were rasterized for use with a cell size of 30 m. 

Submerged aquatic vegetation (SAV) data were produced and provided by the Michigan Tech Research 

Institute (Brooks et al., 2015; MTRI, 2012; Shuchman et al., 2013).  The data have a 30 m resolution and 

represent the extent of SAV in the optically shallow areas of lakes Huron, Michigan, Erie, and Ontario.  

The data were generated using an MTRI-developed, depth-invariant algorithm applied to Landsat 

satellite data. The satellite data were collected during the vegetative growing season during various year 

ranges.  Specifically, vegetative growing seasons were determined by temperature and years varied by 

lake; Lake Erie, May-September 2006-2011; Lake Huron, March-September 2007-2011; Lake Michigan, 

April-May 2008-2011; Lake Ontario, April-September 2008-2011.  Some portions of these lakes could not 

be classified due to high turbidity (Shuchman et al., 2013).  SAV data did not exist or were not available 

for Southern Green Bay and Lake Superior and thus were excluded from the SAV restriction for grass 

carp.  Data for the remaining four lakes were combined using the "Mosaic to New Raster" tool in 

ArcToolbox in ESRI ArcGIS Desktop Version 10.2 (ESRI, 2014) with a cell size of 30 meters.  We utilized 

classes 1 (light submerged aquatic vegetation) and 7 (dense submerged aquatic vegetation).  More 

information about the SAV data can be found at http://mtri.org/cladophora.html. 

Each of these Great Lakes habitat layers was first re-projected and resampled to match the projection 

and cell size of the model, i.e., the geographic coordinate system (WGS 1984) with a cell size of 
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0.000833 x 0.000833 degrees (approximately 65 x 93 m). Model restrictions were performed using the 

habitat layers as a ‘mask’ within ArcGIS’s Raster ToolBox to limit the model to the spatial areas defined 

by the physiological parameters as determined though the literature review described above.   

Results 

Hydrilla (n=1017) has been observed on all continents except Antarctica; however most observations 

occurred outside of its native range (i.e., the Indian subcontinent and regions of Korea; (Jacono et al., 

2014) (Figure 1a). Niche centrality of Hydrilla was generally >0.5 worldwide, indicating that its 

environmental tolerances are wide enough that most of the global land mass is contained within its 

estimated climate niche. Most suitable habitats for Hydrilla were identified in North America south of 

Canada, South America, Europe, Southern Africa, Australia, and in eastern Asia (Figure 1b). The model 

demonstrated considerable predictive accuracy (AUC = 0.922, ESM Figure S1, Boyce index = 0.785), and 

mean diurnal temperature range and precipitation of the warmest quarter were the two most important 

predictor variables (Table 1, ESM Figure S2). Results from the random cross-validation and spatial cross-

validation support the predictive value of this model (ESM Table S1). 

Overall, niche centrality, or suitable climate condition that falls inside the ecological niche, for Hydrilla in 

the Great Lakes was generally high (>0.8) for 86% of the basin (Figure 2a). Clipping the niche centrality 

for the Great Lakes by GDD indicates that most of the shallow habitats of Lakes Michigan, Huron and 

Ontario may provide suitable habitat for axillary turion growth of this species. When restricted only by 

GDD, almost the entirety of Lake Erie has the potential for Hydrilla establishment, and in contrast, Lake 

Superior generally cannot support axillary turion growth of Hydrilla due to its benthic thermal profile 

(Figure 2b). However, incorporating photic zone with the GDD restriction decreased the amount of 

suitable Hydrilla habitat by 62% relative to the GDD clip, and Hydrilla is predicted to occur only along the 

southerly shorelines of Michigan and Huron, and in western and central Lake Erie (Figure 2c).  
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Similar to Hydrilla, grass carp occurrences (n=663) were distributed on six continents (except 

Antarctica), and most observations occurred outside of the native range (i.e., Eastern Asia) (Figure 3a). 

There was considerable overlap in predicted suitable climate for grass carp and Hydrilla, with high niche 

centrality for grass carp occurring in most regions of North and South America, Europe, Southern Africa, 

and Australia (Figure 3b), although to a lesser extent than Hydrilla (Figure 1b). The model demonstrated 

considerable predictive accuracy (AUC = 0.877, ESM Figure S4, Boyce index = 0.79). The mean 

temperatures of the wettest, driest, and warmest quarters and the precipitation of the driest quarter 

were the four most important predictor variables (Table 1, ESM Figure S5). Results from the random 

cross-validation and spatial cross-validation show similar predictive performance as for Hydrilla (ESM 

Table S1). 

Most of the Great Lakes region had a high niche centrality (>0.8), indicating suitable climate conditions 

for grass carp (Figure 4a). However, when restricted by SAV and wetland layers, suitable habitat was 

reduced by 98% (Figure 4b). The inclusion of predicted Hydrilla niche greatly increased (+633%) the 

amount of estimated available suitable habitat for grass carp, relative to the SAV and wetland layer, in 

the Great Lakes (Figure 4c). 

Discussion 

Our study predicted regions of suitable climate and habitat for two NAS that currently threaten the 

Great Lakes. We also estimated the spatial extent of a potential joint invasion of these species. Species 

distribution model outputs predicted suitable climate conditions within the ecological niche for both 

species on all continents (excluding Antarctica). Further, in agreement with previously published SDMs 

for grass carp and Hydrilla (Barnes et al., 2014; DeVaney et al., 2009; Herborg et al., 2007; Wittmann et 

al., 2014), most regions of the Great Lakes were estimated to contain highly suitable climate conditions, 

with significant spatial overlap of these conditions in all five lakes. By restricting SDM projections with 
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Great Lakes specific habitat layers, we were able to refine the spatial distribution of environments that 

pose the highest establishment likelihood given each species' physiological limitations. By combining 

these predictions with information on the potential for introduction, likelihood of impacts, and 

secondary spread, natural resource managers may better identify potential hotspots for NAS 

establishment, develop strategies to prevent new introductions, and prioritize sites for surveillance, 

containment, or control (Vander Zanden and Olden, 2008). 

While the range bagging SDMs predicted that most of the Great Lakes contain suitable climate 

conditions to support our study organisms, the restricted models indicated that Hydrilla and grass carp 

habitats would occur primarily in the southerly nearshore zones of lakes Michigan and Huron and in the 

western and central basins of Lake Erie. That these predicted regions occurred generally in the littoral 

zone was largely driven by photic zone depth and temperature (e.g., GDD) limitations of Hydrilla and 

other SAV. Subsequently, these SAV limits determined the potential suitable habitat for grass carp, 

which we discuss the details of this interaction in greater detail below. These limiting factors are 

dynamic variables, often owing to anthropogenic impacts such as climate change, land-use change, and 

the establishment of other invasive species (Gronewold et al., 2013; Trumpickas et al., 2009; 

Vanderploeg et al., 2010; Wiley et al., 2010). As these drivers continue to change, and the availability of 

effective mitigation options may also develop, there could be expansion or contraction of the nearshore 

ranges of these species. The dynamic nature of environmental change--including novel species 

interactions--emphasizes the need for iterative risk assessment and the value of long-term datasets to 

inform and update modeling efforts such as those presented here.  

How nonindigenous species may interact with one another in invaded ecosystems has been difficult to 

predict (Grosholz et al., 2000).  This difficulty can be attributed to the variable and hard-to-predict 

outcomes of species interactions (Cope and Winterbourn, 2004; Johnson et al., 2009; Michelan et al., 
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2014). We explored the possibility of the establishment of Hydrilla influencing the distribution of grass 

carp. Relative to model predictions without Hydrilla, grass carp range increased due to the assumed 

presence of Hydrilla. While Hydrilla is known to be a preferred food source for grass carp (Shireman and 

Smith, 1983), the specific interaction between these two species, should they become established 

within the lakes, is uncertain and highly dependent on the unique characteristics of the ecosystems in 

which they may co-exist. For example, the ecosystem effects when grass carp occurs in the same 

environment as Hydrilla vary based on the population densities of both species, community 

composition, and ecosystem type and size (e.g., small ponds versus large reservoir systems) (Bain, 1993; 

Chilton et al., 2008; Dibble and Kovalenko, 2009; Noble et al., 1986).  

Our modeling effort may have over- or underestimated potential distributions of Hydrilla and grass carp 

in Great Lakes habitats.  Uncertainties or absence of available habitat data at appropriate spatial scales 

may have impacted the amount of predicted grass carp or Hydrilla habitat.  For example, limitations 

associated with the satellite-derived SAV data, such as maximum optical depth, which ranges from 7 m 

for Lake Erie to > 20 m for Lake Michigan (no data were available for Lake Superior), might cause 

underestimation of the true distribution of vegetation in the basin (Ashraf et al., 2010).  Additionally, 

nearshore areas known to have extensive macrophyte beds include southern Green Bay (Albert and 

Minc, 2004); however to our knowledge, no spatial data layers for SAV were available for this area. The 

absence of these SAV data suggest an underestimation of potential grass carp habitat in this, and 

possibly other areas.   

We used the range bagging methodology in this study for four reasons. First, because range bagging 

estimates the environmental limits of species habitat, it more closely matches the concept of the 

ecological niche (Drake, 2015). As a result, its consideration of boundaries rather than the central 

tendency may offer a more conservative (i.e., broader) niche relevant for invasive species risk 
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assessment, while also assisting with interpretability. Second, range bagging uses only presence points 

for model fitting, removing the need for selecting a suitable area from which to sample background 

points. Third, range bagging is shown to perform as well as widely used alternatives, such as MaxEnt and 

boosted regression trees on validation data sets and aquatic invasive species, including the two 

considered here (Drake, 2015; Elith et al., 2011; Kramer et al., in prep; Cope et al. in review; Drake and 

Richards in review). To support this, we showed that range bagging provided informative predictions 

even when conducted on spatially-segregated partitions of the data, indicating transferability (Wenger 

and Olden, 2012). Fourth, range bagging is computationally feasible even when the number of 

environmental dimensions is large (Drake, 2015). 

 

The implementation of habitat data layers in conjunction with range bagging, or any SDM algorithm, is 

not always straightforward, especially as environmental tolerances, habitat requirements and species 

interactions are usually poorly documented  (Kilroy et al., 2008). Observations of spatial or physical 

limitations, such as maximum or minimum depth distribution of a species within a water column are not 

necessarily representative of the limitation for that species' distribution. This type of information may 

be misleading without a fuller understanding of what mechanisms related to depth truly limit species 

establishment. As such, we did not restrict Hydrilla distribution by observations of maximum depth from 

the literature, because the information relating depth to survival in the field was not available. However, 

we believe it appropriate to utilize the known relationship between light extinction and Hydrilla survival 

because it captures the mechanism by which depth may be a limiting factor.  Future efforts could 

include using correlative studies such as those presented in Gallardo and Aldridge (2013), to better 

understand the relationship between habitat and species occurrence.  
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One way to potentially further improve upon range bagging is through the direct integration of 

experimental physiological data, rather than the model restrictions we utilized in this analyses.  

Incorporating a prior probability on the minimum or maximum conditions for survival within the range 

bagging algorithm would be particularly useful in cases where a species is suspected of not reaching the 

extents of its environmental tolerances for contingent biogeographic or ecological reasons (e.g. an 

invasive species not at equilibrium with its expected range). Further, the synergistic effects of these 

complex interactions are likely key variables in the prediction of sustained populations. The 

understanding of these relationships may be further complicated by potential temporal mismatches 

between species occurrence records and climatological data used as environmental input variables for 

SDMs. Herein, for example, the climatological data were collected from 1950 – 2000, and the habitat-

specific data were collected after 2005. Arguably, there may be significant differences between the 

climatological data after 2005, thus affecting the relationship between SDM outputs for grass carp and 

Hydrilla, and the habitat-specific data used to restrict the predicted ranges. 

   

Management Implications and Conclusions 

The methods developed in this study may provide a strategy for deriving a scientifically-informed 

prioritization of Great Lakes regions for the management of existing and future invasions of NAS. The 

integrated approach presented here relies upon the development and availability of high resolution and 

broadly scaled habitat data layers that can be applied to assess the ecological risk of NAS or the 

potential habitat for native species. By combining species-relevant habitat layers with SDM predictions, 

we sought to develop a useful scientific result for managers who may not only have interest in Hydrilla 

and grass carp establishment in the Great Lakes, but also have an interest in analyses that can be used 

to form the basis for surveillance or control programs of other NAS. Combining habitat data layers with 

SDMs not only reduces the uncertainty about where NAS may establish, but these types of multi-species 
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analyses also serve to identify vulnerable regions of the Great Lakes. Important next steps can include: 

(1) utilizing habitat layers and known species occurrences to determine and quantify the relationships 

between them, and (2) taking advantage of existing information (e.g., physiological limitations, 

occurrences, predictive models based on climate matching) on NAS, particularly those established in 

adjacent watersheds, to explore the potential consequences of not just one, but multiple invasions. 
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Tables 

Species 

Records 

(N) AUC 

Bioclim variables of 

greatest importance 

Relative 

Importance of 

Bioclim variable 

(Proportion) 

Great Lakes niche 

restriction 

scenarios 

Reference 

supporting 

restriction 

variable 

Hydrilla  

(H. verticillata) 

1017 0.896 Mean diurnal temp 

 

0.06 (1) Accumulated 

Growing Degree 

days (n = 500) 

 

(2)Accumulated 

Growing Degree 

days + Photic 

Zone 

Spencer et 

al. 2000 

 

 

Canfield and 

Langeland  

1985 

Isothermality 0.06 

Precip of warmest 

quarter 

0.10 

grass carp 

(C. idella) 

663 0.877 Mean temp of  

wettest quarter 

0.14 (1) Submersed 

Aquatic 

Vegetation + 

Wetlands 

 

(2) Submersed 

Aquatic 

Vegetation + 

Wetlands + 

Hydrilla Niche 

Nixon and 

Miller, 1978 

 

 

Bain, 1993 

 

 

Cudmore et 

al., 2004 

Mean temp of driest 

quarter 

0.09 

Mean temp of 

warmest quarter 

 

0.09 

Precip of driest 

quarter  

0.07 

 Table 1. Summary table for range bagging species distribution model outputs and restriction variables. 

Two species were modeled using global occurrences (2nd column).  AUC = Area Under Curve evaluation 

and Bioclim variables of greatest importance included in columns 3 and 4. Column 5 indicates the 

relative importance of each Bioclim variable for each species prediction. Columns 6 and 7 indicate the 

habitat data layers used to restrict the niche predictions for each species, and associated literature 

references used to motivate the restriction layer.  
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Figure legends 

Figure 1. Global occurrences (n=1017) of Hydrilla verticillata (a; top panel) and niche centrality based on 

global occurrence records (b; bottom panel). Niche centrality refers to the tendency of an environment 

to be within the environmental range of a species across multiple environmental variables. 

Figure 2. Niche centrality for Hydrilla verticillata for the comprehensive Great Lakes watershed region (a; 

top panel) and clipped using accumulated growing degree days (GDD) based on benthic temperature 

observations (b; middle panel), and clipped using GDD and photic zone (c; bottom panel). High values of 

niche centrality indicate climate conditions in the Great Lakes basin fall generally within the predicted 

niche. 

Figure 3. Global occurrences (n=663) of grass carp (Ctenopharyngodon idella) (a; top panel) and niche 

centrality based on global occurrence records (b; bottom panel). Niche centrality refers to the tendency 

of an environment to be within the environmental range of a species across multiple environmental 

variables. 

Figure 4. Niche centrality for grass carp for the comprehensive Great Lakes watershed region (a; top 

panel) and clipped using a submersed aquatic vegetation (SAV) and wetlands data layer (b; middle 

panel) and a combined SAV, Wetlands and predicted Hydrilla verticillata niche (c; bottom panel). High 

values of niche centrality indicate climate conditions in the Great Lakes basin fall generally within the 

predicted niche. 












